1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

National Information
Exchange Model Model
Package Description
Specification

Version 3.0alpha6
January 15, 2014

NIEM Technical Architecture
Committee (NTAC)

Contents

¢ 1. Introduction
o 1.1. Background
o 1.2. Purpose
o 1.3. Scope
o 1.4. Audience
¢ 2. Concepts and Terminology
2.1. Key Words for Requirement Levels
2.2. Character Case Sensitivity
2.3. Artifacts
2.4. Schema Document and Namespace Correspondence in NIEM
2.5. Harmonization
2.6. XML Validation
2.7. Reference Schema Documents
2.8. Coherence of Schema Document Sets
2.9. MPD Types
= 2.9.1. NIEM Release
= 2.9.2. Domain Update
2.9.3. Core Update
2.9.4. Information Exchange Package Documentation (IEPD)
= 2.9.5. Enterprise Information Exchange Model (EIEM)
o 2.10. Similarities and Differences of MPD Classes
e 3. MPD XML Schema Document Artifacts
o 3.1. Reference Schema Documents
o 3.2. Subset Document Schemas
= 3.2.1. Basic Subset Concepts
= 3.2.2. Subset Operations

0O 0O 0O o 0 o o o o

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 1/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

= 3.2.3. Subset Schema Document Namespaces
= 3.2.4. Multiple Schema Document Subsets in a Single [EPD or EIEM
3.3. Extension Schema Documents
3.4. External Schema Documents
3.5. Constraint Schema Documents and Document Sets
3.6. Classes of MPDs vs. Classes of Schema Documents
* 4. MPD Documentation Artifacts
o 4.1. NIEM MPD Catalog
= 4.1.1. MPD Catalog as a Table of Contents
= 4.1.2. Extending an MPD Catalog
o 4.2. Metadata Concepts
= 4.2.1. Version Numbering Scheme
= 4.2.2. URI Scheme for MPDs
= 4.2.3. URI Scheme for MPD Artifacts
= 4.2.4. MPD Artifact Lineage
© 4.3. Change Log
= 4.3.1. Change Log for Releases and Core/Domain Updates
= 4.3.2. Change Log for IEPDs and EIEMs
© 4.4. Master Document
= 4.4.1. Master Document Content
o 4.5. XML Catalogs
o 4.6. Information Exchange Packages
= 4.6.1. Schema Validation
= 4.6.2. Declaring Validity Constraints
= 4.6.2.1. ValidToXPath
= 4.6.2.2. XMLSchemaValid
= 4.6.2.3. SchematronValid
= 4.6.2.4. RelaxNGValid
= 4.6.2.5. HasDocumentElement
= 4.6.2.6. ConformsToConformanceTarget
= 4.6.2.7. ConformsToRule
= 4.6.3. IEP Sample XML Instance Documents
5. MPD Resolution, Existence, and Validation Rules
6. Optional MPD Artifacts
o 6.1. NIEM Wantlist
© 6.2. Business Rules
7. Organization, Packaging, and Other Criteria
o 7.1. MPD File Name Syntax
o 7.2. Artifact Links to Other Resources
o 7.3. Duplication of Artifacts
¢ Appendix A. MPD Catalog XML Schema Document
¢ Appendix B. Example Instance XML Document Catalog
e Appendix C. MPD Artifacts
e Appendix D. Guidance for IEPD Directories (non-normative)
¢ Appendix E. Acronyms and Abbreviations
* Appendix F. References

O O O

(o]

Abstract

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 2/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

This document specifies normative rules and non-normative guidance for building Model Package
Descriptions (MPDs) that conform to the National Information Exchange Model (NIEM) version 3.0.

Status

This document is a draft of the specification for NIEM Model Package Descriptions (MPDs). It
represents the design that has evolved from the collaborative work of the NIEM Business Architecture
Committee (NBAC) and the NIEM Technical Architecture Committee (NTAC) and their
predecessors.

This specification is a product of the NIEM Program Management Office (PMO).

Email comments on this specification to niem-comments@lists.gatech.edu.
Remaining work

Schematron rules for MPD Catalog (associated resource tool kit?)

Place conformance target notation on all rules.

Design to consolidate HasElement, HasDocumentElement, etc. in MPD catalog XSD.
Identify convenient classification of rules based on conformance targets.

Definition(s) for "resolve".

Better definitions for schema sets.

Mandatory ToC entries in mpd-catalog.xml (release, CU, DU, IEPD, EIEM dependent)
Appendix for Example IEP (from Cursor on Target)

QA and validity checks on MPD catalog schema (Appendix A)

Recheck acronymns/abbreviations

SOV XNAANE LD~

—

NOTE: Search on "TBD" to find incomplete items.

1. Introduction

This specification assumes familiarity with the National Information Exchange Model (NIEM), its basic
concepts, architecture, processes, design rules, and general conformance rules. For novices to NIEM,
the recommended reading list includes:

¢ Introduction to the National Information Exchange Model [NIEM Introduction]

* NIEM Concept of Operations [NIEM Concept of Operations]

¢ NIEM Naming and Design Rules [NIEM NDR]

e NIEM High-Level Version Architecture [NIEM High-Level Version Architecture]
* NIEM High-Level Tool Architecture [NIEM High-Level Tool Architecture]

e NIEM Conformance [NIEM Conformance]

e NIEM User Guide [NIEM User Guide]

* NIEM Business Information Exchange Components [NIEM BIEC]

¢ NIEM Implementation Guidelines [NIEM Imple mentation Guidance]

The foregoing NIEM documents are available at http: //reference.niem.gov/niem/. See
[NIEM Implementation Guidance] for NIEM Implementation Guidelines.

Those knowledgeable of NIEM should be familiar with the [NIEM NDR], [NIEM High-Level

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html

3/83

mailto:niem-comments%40lists.gatech.edu?subject=NIEM%20MPD%20Specification%20Version%203.0
http://reference.niem.gov/niem/

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6
Version Architecture], [NIEM Conformance], and [NIEM BIEC].

This MPS Specification v3.0 uses and is a peer to the NIEM Naming and Design Rules (NDR)
[NIEM NDR]. It supersedes IEPD guidance previously published in Requirements for a NIEM
IEPD [NIEM IEPD Requirements] and the NIEM User Guide [NIEM User Guide]. The NIEM
User Guide remains a good source for understanding the process of building Information Exchange
Package Documentation (IEPD). It also supersedes both MPD Specification v1.0 and v1.1.

1.1. Background

Many fundamental concepts, processes, and products in the NIEM generally involve aggregating
electronic files into logical sets that serve a specific purpose. Examples of such sets include, but in the
future may not necessarily be limited to, a NIEM release, core update (CU), domain update (DU),
Information Exchange Package Documentation (IEPD), and Enterprise Information Exchange Model
(EIEM). Each of these examples is a NIEM Model Package Description (MPD).

[Definition: Model Package Description (MPD)]

A set of related W3C XML Schema documents and other supporting files organized as one
of'the five classes of NIEM schema sets:

¢ Release (major, minor, or micro).

¢ Domain update (DU) to a release.

¢ Core update (CU) to a release.

* Information Exchange Package Documentation (IEPD).
¢ Enterprise Information Exchange Model (EIEM).

An MPD is self-documenting and provides sufficient normative and non-normative
mformation to allow technical personnel to understand how to use or implement it. An MPD
is packaged as a [PKZIP] archive file.

A key NIEM concept used throughout this specification is data component.

[Definition: data component]

An XML Schema type or attribute group definition; or an XML Schema element or
attribute declaration.

An MPD is a normative specification for XML data components in the format of the World Wide
Web Consortium (W3C) XML Schema Definition Language [W3C XML Schema Datatypes],
[W3C XML Schema Structures]. MPD schema documents either (1) define the semantics and
structure for NIEM reusable data components, or (2) define implementable NIEM exchange instance
documents in W3C Extensible Markup Language (XML) [W3-XML].

An MPD is ready to publish and use when it has been properly packaged with the schemas,
documentation, and supplemental files needed to understand how to use and implement it. MPD
file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 4/83

11514

National Information Exchange Model Model Package Description Specification, 3.0alpha6

content design, development, and assembly may be difficult and time-consuming, especially if done
manually. Software tools have been shown to significantly reduce the complexity of designing,
constructing, changing, and managing MPDs. In order to reduce ambiguity and to facilitate
mteroperable and effective tool support, this baseline specification imposes some degree of
consistency on the termmology, syntax, semantics, and composition of MPDs.

1.2. Purpose

This document is a normative specification for the various kinds of NIEM MPDs. The rules and
guidance herein are designed to encourage and facilitate NIEM use and tools by balancing
consistency, simplicity, and flexibility. Consistency and simplicity make MPDs easy to design correctly,
build rapidly, and find easily (for reuse or adaptation). Consistency also facilitates tool support.
Flexibility enables more latitude to design and tailor MPDs for complex data exchange requirements.
As such, this document does not necessarily prescribe mandates or rules for all possible situations or
organizational needs. If an organization determines it should impose additional constraints or
requirements on its [EPDs beyond those specified in this document (for example, mandating a
normative set of business requirements or a domain model within [EPD documentation), then it is free
to do so, as long as no conflicts exist with this MPD Specification or the [NIEM NDR].

This document defines terminology; identifies required and optional (but common) artifacts; defines
metadata; specifies normative rules, schemes, and syntax; provides non-normative guidance; and as
needed, refers to other related NIEM specifications for more detail.

1.3. Scope

This specification applies to information exchange definitions and release products that employ the data
component definitions and declarations in NIEM Core and Domains. It also applies to the NIEM
release products and their associated updates. In particular, this version of this document applies to the
following MPDs:

* NIEM releases (including major, minor, and micro releases).

¢ NIEM domain updates (DU) [NIEM Domain Update Specification]. (Note these are NOT
the same as the NIEM domain schemas that are part of numbered releases).

¢ Core updates (CU) to NIEM releases.

¢ Information Exchange Package Documentation (IEPD) that define NIEM data exchanges.

¢ Enterprise Information Exchange Model (EIEM) from which one or more NIEM IEPDs can be
built or based.

In the future, as required, other types of MPDs may be added to this list.

At any point in time, an incomplete MPD will be in some state of development. This specification is
applicable to such developing products in that it establishes validity standards for MPDs in progress,
as well as completeness standards for MPDs that reach a final, published, production-quality state. In
turn, tool vendors should be able to build, adapt, and/or integrate software tools that will assist in
MPD development and assembly from raw parts to finished product.

NIEM is a data layer for an information architecture. Files in an MPD generally define XML Schema
types and declare XML elements and attributes to use in payloads for information exchanges. While an
MPD may also contain files from layers beyond the data layer, this speciication is not intended to

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html

5/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

define details of other architectural layers. Such files are generally present only to provide additional
context, understanding, or assistance for implementing the exchange of payloads.

Authoritative sources are not required to revise MPDs that exist before this specification becomes
effective. However, they are always encouraged to consider revising MPDs to meet this specification,
especially when making other significant changes.

1.4. Audience

The following groups should review and adhere to this specification:

¢ The NIEM release manager who is responsible to integrate and publish NIEM releases and
core updates.

¢ NIEM domain stewards and technical representatives who develop and publish domain
updates.

e NIEM IEPD developers and implementers.

¢ NIEM-aware tool developers and vendors.

* Organizations that intend to develop an EIEM.

¢ Individuals or groups responsible to review and approve MPDs.

2. Concepts and Terminology

The presentation of concepts and terms in this section is sequenced for understanding. Each subsection
builds upon previous ones. This section concludes with an explanation of each of the five MPD classes
and a summary of their similarities and differences.

2.1. Key Words for Requirement Levels

Within normative content rules and definitions, the key words MUST, MUST NOT, SHALL, SHALL
NOT, SHOULD, SHOULD NOT, MAY, RECOMMENDED, REQUIRED, and OPTIONAL in
this document are to be interpreted as described in [RFC2119 Key Words].

2.2. Character Case Sensitivity

This specification imposes many constraints on the syntax for identifiers, names, labels, strings, etc. In
all cases, unless otherwise explicitly noted, syntax is case sensitive. In particular, XML files n
appendices that define particular artifacts, transformations, and examples are case sensitive.

Also, note that as a general principle, lower case characters are used whenever such will not conflict
with the [NIEM NDR].

2.3. Artifacts

MPDs are generally composed of files and file sets grouped for a particular purpose. Each file is
referred to as an artifact, and each logical set of such files is called an artifact set.

[Definition: artifact]

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html

6/83

11514

National Information Exchange Model Model Package Description Specification, 3.0alpha6
A single file with a defined purpose.

[Definition: artifact set]

A collection of [artifacts] logically grouped for a defined purpose.

An MPD is itself a set of artifacts, the purpose for which is to define and document the intended use of
the MPD. While the kernel of an MPD is its XML schema document (XSD) artifacts, there are also
other kinds of MPD artifacts. These may include HTML (or XML converted to HTML for display),
text, or graphic files used for human-readable documentation. An MPD may also have artifacts
mtended to help assist in or accelerate the use and implementation of the MPD. For example, these
may be XML, UML, or binary files that are inputs to or outputs from software tools used to build,
generate, or edit the MPD or its schema document artifacts. Appendix C, MPD Artifacts, below,
contains a listing of mandatory and common optional artifacts for the five types of MPDs. Common
types of artifacts are described in more detail in subsequent sections.

2.4. Schema Document and Namespace Correspondence in NIEM

To simplify automatic schema processing and reduce the potential for confusion and error, [NIEM
NDR] principles state that each NIEM-conformant namespace SHOULD be defined by exactly one
reference schema document. To support this concept, the [NIEM NDR] disallows the use of
xs:1include, and mandates the use of the xs: schema/@targetNamespace attribute in NIEM-
conformant schema documents.

So, (1) each NIEM namespace is defined by a single NIEM-conformant schema document, and (2)
each NIEM-conformant schema document declares a target namespace. NIEM does not permit
schema documents without target namespaces, unless they are from sources outside of NIEM.

2.5. Harmonization

Harmonization is a process that NIEM governance committees and domain stewards iteratively apply
to NIEM content (specifically, its semantics, structure, and relationships) during the preparation of a
NIEM major or minor release. On a more restricted scale a domain steward harmonizes his/her own
content (schema documents) in preparation for a [domain update] MPD. Multiple domain stewards
may collaborate in a coordinated [domain update]. In this case, to the extent possible, harmonization
may be applied across the content of all the collaborating domains. Harmonization results in model
change and evolution with the intent of removing semantic duplication and overlap while improving
representational quality and usability.

[Definition: harmonization]

Given a data model, harmonization is the process of reviewing its existing data definitions
and declarations; reviewing how it structures and represents data; integrating new data

components; and refactoring data components as necessary to remove (or reduce to the
maximum extent) semantic duplication and/or semantic overlap among all data structures

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 7/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6
and definitions resulting in representational quality improvements.

2.6. XML Validation

A discussion of XML validation requires a basic understanding of basic XML terminology. The
following definitions are necessary.

[Definition: XML document]

A document in XML format as defined by [W3-XML], s2.

[Definition: schema component]

A schema component is as defined by [W3C XML Schema Structures] s2.2, “xML
Schema Abstract Data Model”, which states:

Schema component is the generic term for the building blocks that comprise
the abstract data model of the schema.

[Definition: XML Schemal]

An XML Schema is as defined by [W3C XML Schema Structures] s2.2, “xML
Schema Abstract Data Model”, which states:

An XML Schema is a set of schema components.

[Definition: XML schema validation|]

The process of checking an [XML document] to confirm that it is both well-formed and
valid, in that it follows the structure defined by an associated [XML Schema]. A well-
formed document follows the basic syntactic rules of XML, which are the same for all
XML documents.

[Definition: XML schema document]

A physical (file) representation of part or all of an [XML Schema]. One or more XML
schema documents are used to assemble [schema components] into an [XML Schema].

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 8/83

http://www.w3.org/TR/2008/REC-xml-20081126/#dt-xml-doc
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-schema
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-schema

11514

National Information Exchange Model Model Package Description Specification, 3.0alpha6

This specification often refers to the process of [XML schema validation], that is, validation of an
mstance XML document to confirm it adheres to the structure defined by a particular [XML Schema].
Generally, this should occur periodically during and after design time to ensure the conformance and
quality of an information exchange definition (i.e., [XML schema documents]) and associated instance
XML documents. However, local architecture or policy may dictate the need to validate more often,
and in some cases may require runtime validation.

XML schema document sets that define a NIEM mnformation exchange must be authoritative.
Application developers may use other schemas (e.g., constraint or Schematron schema documents) for
various purposes, but for the purposes of determining NIEM conformance, the authoritative reference
schema documents (NIEM releases) are relevant. This does not mean that XML validation must be
performed on all instance XML documents as they are served or consumed; only that the instance
XML documents validate if and when XML validation is performed. Therefore, even when validation
is not performed, instance XML documents must be valid against the XML schema that is assembled
from XML schema document sets that specify these instance XML documents.

2.7. Reference Schema Documents

A NIEM reference schema document is a schema document that is intended to be the authoritative
definition of business semantics for components within its target namespace. Reference schema
documents include the NIEM Core schema documents, NIEM domain schema documents, and
NIEM domain update schema documents. The normative definition for a reference schema document
and applicable conformance rules are found in the [NIEM NDR]. The definition is repeated here:

[Definition: reference schema document]
An XML Schema document that meets all of the following criteria:

¢ [tis a conformant schema document.

* [tis explicitly designated as a reference schema document. This may be declared by
an MPD catalog or by a tool-specific mechanism outside the schema document.

¢ [t provides the broadest, most fundamental definitions of components in its
namespace.

¢ [t provides the authoritative definition of business semantics for components in its
namespace.

* [tis intended to serve as the basis for components in IEPD and EIEM schema
documents, including subset, constraint, and extension schema documents.

See also [reference schema document set].

[Definition: reference schema document set]

A set of related reference schema documents, such as a NIEM release. See also [reference
schema document].

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html

9/83

11514

National Information Exchange Model Model Package Description Specification, 3.0alpha6

The [NIEM NDR] conformance rules for reference schema documents are generally stricter than
those for other classes of NIEM-conformant schema documents. For example, they are required to
employ an xs : annotation with child elements xs:documentation and xs:appinfo that
encapsulate semantic information for each XML element and attribute declaration, and type definition.

NIEM reference schemas are very uniform in their structure. As they are the primary definitions for
data components, they do not need to restrict other data definitions, and they are not allowed to use
XML Schema's complex type restriction mechanisms.

2.8. Coherence of Schema Document Sets

A NIEM release is always a coherent set of reference schema documents in which multiple versions
of semantically identical types or properties do not exist; and all types and properties are uniquely
defined and declared. Each numbered release has been harmonized, tested, and carefully reviewed by
NIEM governance committees in order to eliminate semantic duplication. The [NIEM High-Level
Version Architecture] defines a coherent schema document set as one that has the following
properties:

[Definition: schema document set coherence]

A schema document set is coherent when it has the following properties: (1) the set does
not refer to a schema document outside the set (i.e., the set is closed), and (2) the set does
not include two different versions of the same component in an incompatible way.

Consider the following simple example of incoherence in the figures below. Consider Figure 2-1,
Incoherent schema set - not closed, below, in which Justice domain has published a new schema
document (version 4.1). Note the descendant relationships between the old and new data
components. A schema document set consisting of Screening 1.1 and Justice 4.1 is incoherent because
it refers to the old Justice 4.0 schema document outside the set, and therefore, violates the first
criterion (the set must be closed). To resolve this we could incorporate the older 4.0 version into this
set. Figure 2-2, Incoherent schema set - incompatible data components, below, indicates that
adding Justice 4.0 violates the second criterion because multiple versions of the same component will
exist that are incompatible. To make a coherent schema document set, either the Screening domain
must be adjusted to use the new Justice 4.1 component or the schema document set must be revised
to use the Screening domain with Justice 4.0 and not Justice 4.1.

Figure 2-1: Incoherent schema set - not closed

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 10/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

Justice-4.0
f-t
Arrest L ArrestType
¥ :
\ :
descendant descendant
H I
| |
1 1
£ / i ! i
- has-a . \ T
Screening 1.1 /f Justice-4.1 , v
EnforcementEncounterType ArrestType
has-a
Schema Set (not closed)
\ P

Figure 2-2: Incoherent schema set - incompatible data components

/ Justice-4.0
f-t
ArrestType
Y :
. :
descendant descendant
]
I
1 |
1 I
1 I
- has-a - I 1
Screening 1.1 / Justice-4.1 v
EnforcementEncounterType / ArrestType
has-a
Qlosed Schema Set j

In general, two or more versions of a data component are incompatible when a type or element in one
version of a schema has been copied to or redefined/redeclared in another, and both versions must
exist in the same set because of cross referencing (as in the figure above). Note that even if all data
components have not changed within two versions of the same schema document, a set that contains

both schema documents will still be incoherent because the mere duplication of a data component in a
new namespace is considered redefinition (and, of course, duplication).

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 11/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

However, two versions of a data component can also exist in a compatible way. The compatibility of
two different versions of a data component depends on the way the ancestor component was changed
to obtain the descendant. In Figure 2-2, Incoherent schema set - incompatible data components,
above, Justice 4.1 and 4.0 Arrest elements are incompatible because the 4.1 version of Arrest was
simply given an additional property (NewElement) and is essentially a redeclaration of the 4.0 version.
This results in two semantically identical elements. In fact, as already mentioned, even if the
ArrestType had remained the same across both versions, the 4.1 version is considered a redefinition
and duplication of the 4.0 version.

On the other hand, ifthe 4.1 ArrestType had been derived (through type derivation) from the 4.0
version, and the 4.1 Arrest element had been made substitutable for the 4.0 version, then these
components would be compatible. The difference is that these components have a clear relationship to
their ancestors that is defined through XML mechanisms, whereas the former components do not.
Furthermore, the substitutability property makes these components easily usable together (i.e.,
compatible).

The need to be a coherent schema document set is only required by official NIEM releases (major,
minor, and micro). A core update is not absolutely required to be coherent with the core it applies to.
However, except in rare cases, it will be crafted to be coherent. In order to provide flexibility to
domains, a domain update schema document set is not required to be coherent. Whether or not a
domain update is coherent with a given release depends on the content changes it applies as recorded
m its change log.

2.9. MPD Types
This section details the five classes of MPDs currently defined in NIEM.
2.9.1. NIEM Release
A NIEM release is an MPD containing a full set of harmonized reference schema documents that

coherently define and declare all content within a single version of NIEM. NIEM releases include
major, minor, and micro releases (as defined in the [NIEM High-Level Version Architecture]).

[Definition: release]

A reference schema document set published by the NIEM Program Management Office
(PMO) at http://release.niem.gov/ and assigned a unique version number. Each
schema document in the set defines data components for use in NIEM information
exchanges. Each release is independent of other releases, although a schema document may
occur in multiple releases. A release is of high quality, and has been vetted by NIEM
governance bodies. A numbered release may be a major, minor, or micro release.

Current real examples of NIEM releases include NIEM major releases 1.0, 2.0, and 3.0, and minor
release 2.1. Each numbered release is a reference schema document set that includes a NIEM Core
(along with the various infrastructure and code list schema documents that supplement Core) and
NIEM domain schema documents.

[I
file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 12/83

http://release.niem.gov/

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6
[Definition: major release]
A NIEM release in which the NIEM Core reference schema document has changed since

previous releases. The first integer of the version number ndicates the major release series;
for example, versions 1.0, 2.0, and 3.0 are different major releases.

[Definition: minor release]

A NIEM release in which the NIEM Core has not changed from previous releases in the
series, but at least one or more domain reference schema documents have changed. A
second digit greater than zero in the version number indicates a minor release (for example,
v2.1). Note also that major v2.0 and minor v2.1 are in the same series (i.e., series 2) and
contain the same NIEM Core schema document.

[Definition: micro release]

A NIEM release in which neither the NIEM Core nor the domain reference schema
documents have changed from the previous major or mmor release, but one or more new
reference schema documents have been added (without impact to domain or Core
schemas). A third digit greater than zero in the version number indicates a micro release (for
example, v2.1.1 note that this release does not exist as of this date).

A micro release is a NIEM release that adds new data components to the Core, domains, or both
without removing or modifying existing Core and domain schemas or content. Figure 2-3, Examples
of NIEM numbered releases, below, illustrates both real (v1.0, v2.0, v2.1, and v3.0) and fictitious
(v2.1.1 and v2.1.2) examples of major, minor, and micro release composition.

Note that a given NIEM reference schema document (target namespace) can exist in multiple
numbered releases. For example, as illustrated in Figure 2-3, Examples of NIEM numbered
releases, below, both NIEM 2.0 and 2.1 contain (and reuse) the same NIEM Core 2.0 schema
document. Reuse of schema documents among releases is carefully coordinated to ensure coherence is
maintained within each release. The [NIEM High-Level Version Architecture] defines the
processes for numbering releases and identifying the schema documents that compose these sets.
Later, this specification will outline a similar version numbering scheme for MPDs and their artifacts.

Figure 2-3: Examples of NIEM numbered releases

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 13/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

Major Major Minor Micro Micro Major
NIEM 1.0 NIEM 2.0 NIEM 2.1 NIEM 2.1.1 NIEM 2.1.2 NIEM 3.0

1.0 2.0
Domains Domains

2.9.2. Domain Update

A domain update (DU) is an MPD containing a reference schema document or document set and a
change log that represent changes to NIEM domains. The [NIEM High-Level Version
Architecture] defines a domain update as both a process and a NIEM product. Through use and
analysis of NIEM releases and published content, domain users will identify issues and new data
requirements for domains and sometimes Core. NIEM domains use these issues as the basis for
incremental improvements, extensions, and proposed changes to future NIEM releases. Both the
process and product of the process are referred to as domamn update. This MPD Specification is
applicable to a domain update product.

[Definition: domain update|

An MPD that contains a reference schema document or document set issued by one or
more domains that constitutes new content or an update to content that was previously
published in a NIEM release. Domain updates are published to the NIEM Publication Area
athttp://publication.niem.gov/niem/ and available for immediate use within
IEPDs.

A domain update may define and declare new versions of content applicable to a NIEM release or
other published content. The issuing domain or domains vet each update, but the update is not subject
to review by other NIEM governance. Before publication, domain updates are technically reviewed
for and must satisfy NIEM-conformance, but otherwise have fewer constraints on quality than do
NIEM releases.

A domain update may apply to one or more domain namespaces within a single NIEM major, minor,
or micro release. A domain steward uses a domain update to: (1) make new or changed domain
content immediately available to NIEM data exchange developers between NIEM releases, and (2)

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 14/83

http://publication.niem.gov/niem/

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

request that new or changed content be harmonized into a future NIEM release. (See [NIEM
Domain Update Specification] which provides normative details about domain updates and the
associated processes.)

2.9.3. Core Update

When necessary, the NIEM PMO can publish a core update (CU). This is essentially identical to a
domain update in terms of structure and use, with two important exceptions. First, a core update
records changes that apply to a particular NIEM core version or another core update. This also means
it is applicable to all NIEM releases using that same core version. Second, a core update is never
published to replace a NIEM core. It is intended to add new schemas, new data components, new
code values, etc. to a core without waiting for the next major release. In some cases, minor
modifications to existing data components are possible.

[Definition: core update]

An MPD that applies changes to a given NIEM core schema document or document set. A
core update never replaces a NIEM core; instead, it is used to add new schema
documents, new data components, new code values, etc. to a particular NIEM core. In
some cases, a core update can make minor modifications to existing core data components.

As with domain updates, all core updates are published to the NIEM Publications Area, their changes
are immediately available for use in [IEPDs, and they will be harmonized and integrated into the next
major NIEM release.

2.9.4. Information Exchange Package Documentation (IEPD)

NIEM Information Exchange Package Documentation (IEPD) is an MPD that defines a class of
mstance XML documents that represent a recurring XML data exchange.

[Definition: Information Exchange Package Documentation (IEPD)]

An MPD that defines one or more (generally recurring) XML data or information
exchanges.

A NIEM IEPD is a NIEM-conformant XML schema document set that may include portions of a
NIEM Core schema document (and updates), portions of NIEM Domain schema documents (and
updates), enterprise-specific or IEPD-specific extension schema documents, and declares at least one
[TEP conformance target] within its MPD Catalog Section 4.1, NIEM MPD Catalog, below. The
XML schema documents contained in an [EPD work together to define one or more classes of
mstance XML documents that consistently encapsulate data for meaningful information exchanges.
Furthermore, any instance XML document that is valid for an XML schema document set (in the
IEPD) and an associated [I[EP conformance target] (declared in the IEPD) is considered a member of
that [IEP conformance target] class. XML schema documents in a NIEM IEPD conform to the
[NIEM NDR] and may use or extend data component definitions drawn from NIEM. An IEPD may

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 15/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

also incorporate and use XML schema documents from other standards that do not conform to
NIEM. (See [NIEM NDR] for details.)

An IEPD consists of a set of artifacts (XML schema documents, documentation, sample instance
XML documents, etc.) that together define and describe an implementable NIEM information
exchange. An IEPD should contain an XML schema document set and instructional material necessary
to:

¢ Understand information exchange context, content, semantics, and structure.
¢ Create and validate XML documents defined by the IEPD, and used for information exchanges.
¢ Identify the lineage of the IEPD itself and optionally its artifacts.

A NIEM IEPD defines one or more classes of XML documents. Each of these XML documents is an
Information Exchange Package (IEP) that satisfies all validity constramts for its class as defined by
the IEPD. An IEP is an information message payload serialized as XML and transmitted in some way,
for example over a communications network. ([FEA Data Reference Model] and [GJXDM IEPD
Guidelines] are the original sources of the terms information exchange package and information
exchange package documentation, respectively).

[Definition: Information Exchange Package (IEP)]

An XML document that satisfies all the validity constraints for its class as defined by a
NIEM IEPD.

How to declare validity constraints for one or more IEP classes within an IEPD will be covered in
more depth in Section 4.6, Information Exchange Packages, below.

Note that NIEM conformance does not require that an IEP be native XML on the transmission
medium. A NIEM-conformant IEP may be encrypted, compressed (e.g., using [PKZIP], [RAR],
[W3-EXI], etc.), or wrapped within an envelope mechanism, as long as its original native XML form
can be retrieved by the receiver.

2.9.5. Enterprise Information Exchange Model (EIEM)

As an organization develops IEPDs, it may realize that many of its IEPDs have similar business
content. A collection of closely related business data could be organized at an object level and defined
as extension data components. In NIEM, these extension components are referred to as Business
Information Exchange Components (BIECs), because they are either specific to an organization's
business or they represent a more general line of business that crosses organizational lines. Often they
are business data components developed and used by multiple organizations within the same
community of interest. So, instead of an organization, it is more appropriate and provides better
context if we use the term information sharing enterprise.

[Definition: Information Sharing Enterprise]

A group of organizations with business interactions that agree to exchange information,
often using multiple types of information exchanges. The member organizations have similar

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 16/83

11514

National Information Exchange Model Model Package Description Specification, 3.0alpha6

business definitions for objects used in an information exchange and can usually agree on
their common BIEC names and definitions.

Information sharing enterprises may cross various levels of government and nvolve multiple business
domains. They may be self-defining and can be formal (with specific governance) or mformal and ad
hoc. An information sharing enterprise is the primary entity that supports the development and
management of BIECs and an associated Enterprise Information Exchange Model (EIEM) (to be
discussed next). Henceforth, unless otherwise stated, all references to an enterprise will implicitly mean
mnformation sharing enterprise.

A Business Information Exchange Component (BIEC) INIEM BIEC] is a NIEM-conformant
content model in XML Schema for a data component that meets the specific business needs of an
mformation sharing enterprise for exchanging data about something that is a part of one or more
mformation exchanges. This data component is tailored and intended to be used consistently across
multiple IEPDs built by an enterprise. A BIEC is a NIEM-conformant data component that is:

* Reused from a NIEM release (for example, as a subset; with possibly modified cardinality), or

¢ Extended per the [NIEM NDR] from an existing NIEM data component, or

¢ Created per the [NIEM NDR] as a new data component that does not duplicate existing
NIEM components within a release in use.

[Definition: Business Information Exchange Component (BIEC)]

A NIEM-conformant XML schema data component definition or declaration (for a type,
element, attribute, or other XML construct) reused, subsetted, extended, and/or created
from NIEM that meets a particular recurring business requirement for an information sharing
enterprise.

The use of BIECs has the potential for simplifying IEPD development and increasing consistency of the
business object definitions at all steps in the process, including exchange content modeling, mapping to
NIEM, creating NIEM extension components, and generating XML schema documents.

An Enterprise Information Exchange Model (EIEM) is an MPD that incorporates BIECs that meet
enterprise business needs for exchanging data using [NIEM BIEC]s. An EIEM is an adaptation of
NIEM schema documents, tailored and constrained for and by an enterprise. An EIEM contains the
following schema documents that are commonly used or expected to be used by the authoring
enterprise:

* One standard NIEM schema document subset (or reference schema document set).

* One or more NIEM extension schema documents that extend existing NIEM data components
or establish new NIEM-conformant data components.

¢ Optionally, as needed, one or more NIEM constraint schema document sets (usually based on
a schema document subset).

¢ Optionally, as needed, one or more XML schema documents for non-NIEM (i.e., non-
conformant) standards with associated extension schema documents that contain adapter types
for the data components that will be used from those non-NIEM XML schema documents (per

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html

17/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6
[NIEM NDR])).

[Definition: Enterprise Information Exchange Model (EIEM)]

An MPD that contains a NIEM-conformant schema document set that defines and declares
data components to be consistently reused in the IEPDs of an enterprise. An EIEM is a
collection of BIECs organized into a schema document subset and one or more extension
schema documents. Constraint schema documents and non-NIEM-conformant external
standards schema documents with type adapters are optional.

An information sharing enterprise that creates and maintains an EIEM authors IEPDs by reusing its
EIEM content instead of (re)subsetting reference schema documents sets and (re)creating extensions.
An EIEM may also contain business rules or constraint schema document sets tailored to enterprise
requirements and designed to restrict variability in use of NIEM data components. This not only saves
time, but it also ensures that enterprise IEPDs reuse NIEM and associated extensions consistently.
(XML schema document subsets, extension schema documents, and constraint schema document sets
will be defined and discussed in more detail later n this document). Figure 2-4, BIECs, EIEM, and a
small family of IEPDs., below, generally illustrates how BIECs, an EIEM, and an IEPD family relate

(Constraint schema document sets are optional and not depicted in this figure).

Figure 2-4: BIECs, EIEM, and a small family of IEPDs.

pd

BIECs

AN

o

~

schema extension | | extension
subset schemal schema 2
oa® o e o
Soceng |47 me || fr
oo u_"'q. oy W ‘.":.a_
L] t? [I'.t*' -y
external
schema
—a= - | external
e
schema
@
C
&
=
EIEM XRAY

IEPD XRAY-A

schema
subset

‘fg‘j extension

q: schema
o p

¢ ¥ external

& “g| schema
[]

Reuses &
=
BIECs
(+ external
schemas] IEPD XRAY-B
from schema
subset
“ﬂ extension
g: ::}ll.!ma
tt external
<% schema
o G
o,
IEPD family

2.10. Similarities and Differences of MPD Classes

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html

18/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

It will be helpful to summarize the foregoing discussions by listing the primary similarities and
differences among the various types of MPDs. This will help highlight the nature of this specification as

a baseline and point of leverage for all five classes of MPDs: NIEM release, core update (CU),

domain update (DU), IEPD, and EIEM. Note that these lists are not all inclusive.

MPD class similarities:

¢ Principal artifacts are XML schema documents (XSD), the purpose for which is to define and
declare reusable data components for information exchanges or to define the exchanges

themselves.

¢ Each MPD requires a self-documenting mpd-catalog.xml artifact containing metadata and a
listing of its key artifacts. This establishes its name, version, class, purpose, general content,

lineage, etc.
e Each MPD requires a change log.

¢ Each MPD requires a Uniform Resource Identifier (URI) and a version number.
* FEach MPD must be packaged as a self-contained ZIP archive (in one form). Self-contained
simply means that an MPD has copies of (not just URLSs or references to) all schema

documents needed to validate instance XML documents it defines.

¢ Each MPD may contain optional alternate representations besides XML Schema (for example,

generic diagram, UML diagram, XMI, database format, spreadsheet, etc.).

MPD class differences:

e JEPDs and EIEMs contain subset, extension, external, and constraint schema documents and
document sets. NIEM releases, core updates, and domain updates contain reference schema

document sets.

* An IEPD must declare at least one [[EP conformance target] within its MPD Catalog Section
4.1, NIEM MPD Catalog, below. Other MPD classes do not have this requirement.

¢ EIEMs and domain updates may optionally contain sample nstance XML documents and
associated XSLT files to display them. NIEM releases and core updates do not.

¢ A domain update may supersede and replace another published schema document/namespace.
It may also add to or modify content in another published schema document/namespace without
including the unchanged content. Core updates may only add to (supplement); never a

replacement for and never modifies a NIEM Core.

e [EPDs, EIEMs, and NIEM releases are independently complete. A core update can be issued
as a new complete standalone reference schema document to be used with a NIEM core.

Table 2-1, Comparison of MPD classes, below, summarizes the similarities and differences of MPD

classes by indicating the characteristics for each:

Table 2-1: Comparison of MPD classes

Characteristics of MPD Classes Release|CU/DU|IEPD |[EIEM

Requires a URI X X X X X
Requires a version number X X X X [X
Must be packaged as a [PKZIP] archive X X X X X
May contain alternate model representations (in addition to XSD) [X X X X X
Requires an mpd-catalog.xml artifact (specified by XSD) X X X X X
Requires a formal XML change log (specified by XSD) X X X

Requires a change log but may be nformal; any format X X

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html

19/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

Requires a master document X X

Its XML schema document set defines reusable data components |X X X X
Its XML schema document set defines data exchanges (IEPs)

Can contain subset, extension, external, or constraint schema
documents

Contains subset, extension, or external schema documents; optionally
constraint schema document sets

Contains reference schema documents only X X X

Must declare at least one or more [IEP conformance targets]

May contain sample instance XML documents that validate to XML
schema document set

Required to be independently complete standalone XML schema
document set

May be independently standalone XML schema document set X

May supersede other published XML schema documents (target
namespaces)

3. MPD XML Schema Document Artifacts

XML schema document artifacts are the essential content of MPDs because they normatively define
and declare data components. The purpose of an MPD is determined by the XML schema document
or document set(s) it contains; furthermore, each schema document may have a different purpose. The
[NIEM NDR] addresses some schema documents as conformance targets including reference
schema documents, extension schema documents, and schema document sets. Each conformance
target may adhere to a different (though possibly overlapping) set of conformance rules. Consult the
[NIEM NDR] for these rules. NIEM also employs a special technique that relies on constraint
schema documents and document sets.

The following subsections will define each type of NIEM schema document and document set, and will
identify the types of MPDs that may or must contain them. The last subsection discusses sample
mstance XML documents (IEPs) that validate with IEPD schema document sets, and when such
mstance XML documents are mandatory.

3.1. Reference Schema Documents

This section generally applies to NIEM releases, core updates, and domain updates. Though not
common, it is also valid to use a reference schema document or document set within an IEPD or
EIEM. Reference schema document and reference schema document set were defined earlier in
Section 2.7, Reference Schema Documents, above.

A NIEM reference schema document is intended to be the authoritative definition schema document
for a NIEM target namespace, therefore, all NIEM releases, core updates, and domain updates are
composed of a reference schema document set and associated namespaces. As a standalone artifact,
a reference schema document set is always coherent and harmonized such that all types and properties
are semantically unique (i.e., multiple versions of semantically identical types or properties do not exist
within the set).

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 20/83

11514

National Information Exchange Model Model Package Description Specification, 3.0alpha6

As authoritative definitions, NIEM reference schema document sets satisfy more rigorous
documentation requirements. The [NIEM NDR] requires that each type definition, and element and
attribute declaration in a reference schema document contain an xs: annotation element that defines
its semantic meaning. As will be explained later, extension schema documents are also authoritative
definitions, but in a local sense. They are authoritative within a given IEPD or EIEM, and therefore,
must also satisfy the same rigorous documentation rules as reference schema documents.

Typically reference schema documents contain data components with the most relaxed cardmality (0 to
unbounded). However, this is not an absolute requirement. Cardinality in reference schema
documents may be constrained if necessary to model reality. For example, one might claim that NIEM
releases should restrict PersonType to a single occurrence of the element PersonBirthDate. Every
person has one and only one birth date. Unfortunately, also in reality, criminal persons often present
multiple identities with multiple birth dates; and so the capability to represent such is an important data
requirement for NIEM.

3.2. Subset Document Schemas

This section only applies to IEPDs and EIEMs. NIEM releases, core updates, and domain updates do
not contain schema document subsets (only reference schema document sets).

3.2.1. Basic Subset Concepts

A NIEM schema document subset is a set of XML schema documents that constitutes a reduced set
of components derived from a NIEM reference schema document or document set associated with a
given numbered release or domain update. Any given XML schema document within a schema
document subset is referred to as a subset schema document (terms reversed).

[Definition: subset schema document]
An XML schema document that meets all of the following criteria:

¢ [t is built from a reference schema document set where one or more reference
schema documents has been substituted by a its corresponding subset schema
document.

¢ It is built from a reference schema document by applying subset operations to the
XML schema statements in a reference schema document.

¢ [t is explicitly designated as a subset schema document. This is accomplished by
declaration in the relevant MPD catalog or by a tool-specific mechanism outside the
subset schema document.

* [t has a target namespace previously defined by a reference schema document. That
is, it does not provide original definitions and declarations for schema components,
but instead provides an alternate schema representation of components that are
defined by a reference schema document.

¢ It does not alter the business semantics of components in its namespace. The
reference schema document defines these business semantics.

* [tis intended to express the limited vocabulary necessary for an IEPD or EIEM and
to support XML Schema validation for an IEPD.

See also [schema document subset].

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html

21/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

The primary purpose for a schema document subset is to reduce and constrain the scope and size of a
full NIEM reference schema document set for use within an IEPD or EIEM. Thus, a schema document
subset is derived from a reference schema document set (such as a NIEM release) by applying subset
operations (See Section 3.2.2, Subset Operations, below). Also, note that the process of deriving a
schema document subset from a NIEM reference schema document set is optional; it is completely
valid to reuse NIEM reference schema documents as-is within [IEPDs or EIEMs.

[Definition: schema document subset]

An XML schema document set built from a reference schema document set by applying
subset operations to the reference schema documents in that set. See also [subset schema
document].

Because NIEM adopts an optional and over-inclusive data representation strategy, most elements in a
NIEM reference schema have zero to unbounded cardnality. So, elements with cardinality
minOccurs="0" are optional and may be omitted from a subset schema document if not needed for
business reasons. It is also valid to constrain element cardnality within a subset schema document, as
long as doing so does not break the subset relationship with the reference schema document set. For
example, a reference schema document element with cardinality (minoccurs="0",
maxOccurs="unbounded") may be constrained to (0,1) or (1,1) in a subset schema document.
However, if a reference schema document element's cardinality is (1,unbounded), it may not be
constrained to (0,1) since this breaks the subset relationship. The interval (0,1) is not contained within,
and instead, overlaps the interval (1,unbounded).

The fundamental rule for a valid schema document subset is as follows:

[Rule 3-1]

Any mstance XML document that validates agamnst a NIEM schema document subset will
validate against the NIEM reference schema document set from which that schema document
subset was derived.

3.2.2. Subset Operations

NIEM subset operations are essentially reduction operations that remove or constrain portions of a
reference schema document set, thereby building a profile of the set. They do not expand the scope
(ie., relax constraints) or change the semantics of reference schema document set content.

The following describe valid operations that will produce a [schema document subset]:

1. Remove an XML comment statement.
2. Remove an xs:annotation (includes xs:documentation and xs: appinfo).
3. Increase the value of an xs:element/@minOccurs attribute (must be less than or equal to

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 22/83

11514

A e AN

10.
. Remove an xs:enumeration froman xs:simpleType (unless it is the only remaining

12.
13.

14.
15.
16.

17.

18.

National Information Exchange Model Model Package Description Specification, 3.0alpha6

maxOccurs Value).

Decrease the value of an xs:element/@maxOccurs attribute (must be greater than or equal to
@minOccurs value).

Remove an xs:element if @minOccurs="0".

Remove an xs: complexType Or xs:simpleType (if not supporting an element or attribute).
Remove an xs:attribute (if@use="optional") froman xs: complexType.

Change an xs:attribute/Quse="optional” t0 Guse="prohibited".

Change an xs:attribute/Quse="optional" t0 Quse="required".

Remove an xs: schema/xs:element declaration (if not supporting an element use).

xs:enumeration).

Add or apply a constraining facet to an xs: simpleType.

Remove an xs: import and its associated schema document (if the schema document is not
used within the document set).

Change a concrete xs: /schema/xs:element declaration to @abstract="true".

Change an element fromnillable="true" tonillable="false".

Substitute an xs:element/@substitutionGroup member for its associated substitution
head.

Substitute a composition of xs:element/@substitutionGroup members for their associated
substitution head (subject to cardinality and unique particle attribution (UPA) constraints). The
composition is an ordered sequence of the @substitutionGroup member elements. Each
substitute element may bound its cardinality such that the total cardinality sum is within the
bounds of the @substitutionGroup head cardinality. Order and cardinality of the
replacement sequence must conform to XML Schema UPA constrants.

Replace a wildcard (subject to cardinality, UPA, and namespace constraints) with a
composition, i.e., an ordered sequence of elements. Each element may further bound cardinality
within the bounds of the wildcard. Order and cardinality of replacement sequence must conform
to XML Schema UPA constraints. The namespace of each element must conform with
namespace constraints specified by the wildcard (if any).

3.2.3. Subset Schema Document Namespaces

A schema document subset is essentially a reference schema document set (i.e., a numbered release)
that has been modified by applying the foregoing subset operations to support business requirements
represented in an IEPD or EIEM. A subset derived from a reference schema document set may differ
from that reference set only in that its content has been reduced and/or constrained. For this reason,
each subset schema document adopts the target namespace of its corresponding reference schema
document.

[Rule 3-2]

Each subset schema document in a schema document subset derived from a reference schema
document set bears the same target namespace as the schema in the reference schema document
set on which it is based.

3.2.4. Multiple Schema Document Subsets in a Single IEPD or EIEM

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html

23/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

This section only applies to NIEM IEPDs and EIEMs. NIEM releases, core updates, and domain
updates do not contain schema subsets.

Previous sections defined a single schema subset derived from a reference schema document set. In
general, an IEPD or EIEM contains a single cohesive schema subset (which may be a rather large set
of files) based on one numbered NIEM release or domain update.

However, this specification does not restrict the number of different subsets that may be employed
within a single IEPD or EIEM. Furthermore, it does not restrict the employment of subsets from
different numbered releases within a single IEPD or EIEM. However, exercising this degree of
flexibility makes it critically important that developers understand the potential consequences. NIEM
subsets represent a delicate compromise between flexibility and nteroperability. On the one hand, a
set of IEPDs based on the same subset and numbered release use identical data components, thereby
enhancing interoperability. On the other hand, mixing dissimilar subsets from the same numbered
release or mixing subsets derived from various numbered releases has the potential to negatively
impact interoperability through incoherence and ambiguity.

The NIEM mandate that every schema have a unique target namespace prevents name conflicts
between reference schema document sets and between two subsets derived from different reference
sets. In spite of namespace distinction, mixing subsets of multiple reference schema document sets can
still mtroduce multiple versions of semantically equivalent data components, a potentially ambiguous
situation. Even employing multiple subsets together that have been derived from the same reference set
has the potential to create a similar result. Above all, it is the developer's responsibility to ensure that, if
mixing subsets from one or more numbered releases within a single IEPD or EIEM, these artifacts are
carefully coordinated and clearly documented to ensure the various versions of semantically equivalent
data components and different schemas with the same namespaces will not cause conflicts, confusion,
and/or failure during validation or exchange implementation.

3.3. Extension Schema Documents

This section only applies to NIEM IEPDs and EIEMs. NIEM releases, core updates, and domain
updates do not contain extension schema documents.

[Definition: extension schema document]

A NIEM-conformant schema document that adds domain or application specific content to
the base NIEM model.

The [NIEM NDR] defines an IEPD extension schema document as a conformance target. In
general, an extension schema document contains components that use or are derived from the
components in reference schema documents. It is intended to express the additional vocabulary
required for an IEPD, above and beyond the vocabulary available from reference schema documents.

An IEPD or EIEM developer who determines that NIEM is missing elements required for a given
mformation exchange has three options to account for such requirement shortfalls. Using rules and
techniques outlined in the [NIEM NDR]:

¢ Extend an existing NIEM data component (if possible).
file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 24/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

* Augment an existing NIEM data type (through NIEM Type Augmentation).
* Build a new NIEM-conformant data component.

A NIEM extension schema document may contain data components built from both options above.
Employment of extension schema documents in an IEPD is entirely optional.

Multiple extension schema documents are allowed in a single IEPD. Developers will likely want to
reuse many of their extension schema documents in other IEPDs. Therefore, the best practice for
extension is to group all data components designed to reuse into one extension schema document or
document set, and group IEPD-specific data components into another. Then the reusable extension
components can be more easily redeployed in other IEPDs as needed. Also, recall that Section 2.9.5,
Enterprise Information Exchange Model (EIEM), above, discusses EIEM employment for larger
scale reuse of NIEM data components in multiple IEPDs.

Extension schema documents generally contain new data component declarations that may (though not
necessarily) be derived from or reference existing NIEM data components. This being the case,
reference schema documents do not exist for new data components found within extension schema
documents. Therefore, extension schema documents must satisfy the more rigorous documentation
requirements of reference schema documents. Per the [NIEM NDR], the definition or declaration of
each new data component in an extension schema document must include an xs:annotation element
that provides its semantics and NIEM-specific relationships.

3.4. External Schema Documents
NIEM allows the use of external schema documents that do not conform to NIEM. Data

components declared and defined in external schema documents require NIEM adapter types to
identify the fact they do not conform to NIEM.

[Definition: external schema documents |

Any XML schema document that is not a NIEM-supporting schema and that is not NIEM-
conformant.

Refer to the [NIEM NDR] for details about external schemas, adapter types, and the rules describing
their usage.

3.5. Constraint Schema Documents and Document Sets

This section only applies to NIEM IEPDs and EIEMs that may use constraint schema documents or
document sets. NIEM releases, core updates, and domain updates do not contain constraint schema
documents.

A constraint schema document is an optional IEPD or EIEM artifact that is used to express business
rules for a class of instance XML documents, and is not assumed to be a definition for the semantics of
the components it contains and describes. Instead, a constraint schema document uses the XML
Schema Definition Language to add constraints to components defined or declared by other schema
documents, usually from a schema document subset.

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 25/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

[Definition: constraint schema document]

A schema document that imposes additional constraints on NIEM-conformant nstance
XML documents. A constraint schema document or document set validates additional
constraints imposed on an instance XML document only after it is known to be NIEM-
conformant (i.e., has been validated with a reference schema document set, or schema
document subset, and applicable extension schema documents). Constraint schema
document validation is a second-pass validation process that occurs independently of and
after conformance validation. A constraint schema document need not validate constraints
that are applied by other schema documents. See also [constraint schema document set].

[Definition: constraint schema document set]

A set of related constraint schema documents that work together, such as a constraint
schema document set built by adding constraints to a schema document subset. See also
[constraint schema document].

Constraint schema documents are generally useful when it is necessary to impose restrictions that are
more complex than cardnality. If only cardinality restrictions are needed, then it is easier and more
efficient to set these directly in the subset schema documents and avoid the use of constraint schema
documents. Otherwise, constraint schema documents may be necessary. Note however, that any
cardinality restrictions placed on NIEM release components within schema document subsets must not
violate the rules established in Section 3.2.1, Basic Subset Concepts, above, which define the
relationship of the reference schema document to a subset schema document derived from it.

The [NIEM NDR] provides a normative definition and description of constraint schema documents.
However, a few points are worth mentioning here.

Use of constraint schemas is one option for applying additional business rules to or tightening
constraints on NIEM IEPs beyond what NIEM itself provides. This particular technique uses the
XML Schema Definition Language [W3C XML Schema Datatypes], [W3C XML Schema
Structures]. NIEM also allows other methods that do not use XML Schema, such as [ISO
Schematron] or other methods. However, at this time there are no normative rules for how these
techniques should be employed in NIEM IEPDs or EIEMs. Therefore, if other techniques are used, it
is a developer responsibility to incorporate appropriate artifacts and clear documentation.

Constraint schema documents are generally designed and employed in sets, similar to reference
schema document set or schema document subsets. A common practice for creating an IEPD or
EIEM constraint schema document set is to start with a valid NIEM schema document subset and
modify it to further restrict the class of instance XML documents (IEPs) that will validate with this
constraint schema set. However, an extension schema document can also be used to derive a
constraint schema document. The namespace of a constraint schema document is established the same
way the namespace of a subset schema document is established, by reusing the target namespace of
the schema document from which it is derived.

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 26/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6
[Rule 3-3]

A constraint schema document MUST bear a target namespace that has been previously
assigned to a reference or extension schema document, or is a constraint schema document
mtended to support another constraint schema document that has such a target namespace.

To use a constraint schema document set to tighten constraints on IEPs, a two-pass validation
technique is employed. In the first pass, an IEP is validated against the schema document subset and
extension schema documents. This pass ensures that IEP semantics and structure conform to the
NIEM model and NDR. In the second pass, an IEP is checked against a constraint schema document
set, which may contain constrained versions of the subset schema documents and extension schema
documents. This pass ensures that the IEP also satisfies the additional constraints (i.e., business rules
that the first pass was unable to validate).

There is no restriction on the number of constramnt schema document sets that an IEPD or EIEM can
employ. As in other advanced situations, developers must clearly document their mtentions for and use
of multiple constraint schema document sets.

In general, constraint schema documents have far fewer requirements than other classes of NIEM
schema documents. Since they work in tandem with NIEM normative schema documents, constraint
schema documents are allowed to use the XML Schema Definition language in any way necessary to
express business rules. This means that to constrain instance XML documents, constraint schema
documents can employ XML Schema constructs that are not allowed in other classes of NIEM
schema documents.

BIECs in particular may have additional business rules in constraint schema documents. A normative
NIEM BIEC Specification (not available at the time of the publication of this MPD Specification), will
supplement or obviate constraint schema documents with consistent and formal techniques for
representing business rules within NIEM components. However, as already mentioned, the MPD
Specification does not prohibit or restrict the application of formal business rule techniques (such as
[ISO Schematron]) to MPDs now.

3.6. Classes of MPDs vs. Classes of Schema Documents

The chart in Table 3-1, Schema document classes vs. MPD classes, below, summarizes the types of
schema documents that: (1) can be contained in an instance of each MPD class, and (2) the
(minimum, maximum) cardinalities of those schema documents. In some cases, certain types of
schema documents are never contained in particular class of MPD. These are labeled “not
applicable”.

Notice that only NIEM releases, core updates, and domain updates contain reference schema
document sets, while only IEPDs and EIEMs contain the user-developed schema document sets. The
pluses (+) indicate that a NIEM-conformant IEPD or EIEM must have at least one schema document
that is either a NIEM reference schema document or a NIEM subset schema document derived from
a NIEM reference schema document (See [Rule 3-4], below).

Table 3-1: Schema document classes vs. MPD classes

Schema Document

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 27/83

11514

National Information Exchange Model Model Package Description Specification, 3.0alpha6

Classes Release CU DU IEPD EIEM
(1, (, 1, (0+, (0+,
Reference unbounded) [unbounded) [unbounded) |unbounded) [unbounded)
not not . (0+, (0+,
Subset applicable |applicable not applicable unbounded) |[unbounded)
) not not . (0,
Constramt applicable [applicable not applicable unbounded) (0, unbounded)
. not not . 0,
Extension applicable [applicable not applicable unbounded) (0, unbounded)
0, 0, (W 0,
External unbounded) [unbounded) [unbounded) |unbounded) (0, unbounded)
[Rule 3-4]

A NIEM-conformant IEPD or EIEM MUST contain at least one schema document that is either
a NIEM reference schema document or a subset schema document derived from a NIEM
reference schema document.

4. MPD Documentation Artifacts

XML schema documents (and the schemas that result from them) are the essence ofa NIEM MPD.
All other artifacts are considered documentation.

A variety of documentation files may be incorporated into a NIEM MPD. However, in addition to
XML schema documents, there are only two mandatory documentation artifacts required by every
MPD: the mpd-catalog and the change log. An mpd-catalog (mpd-catalog.xml) contains basic
metadata, relationship and lineage data, and validation information. The change log provides a history

of modifications.

A master document is mandatory for IEPDs and EIEMs. These MPD classes may be built by
different developers, and may be registered into a repository for reuse by many other users,
developers, and implementers; therefore, a minimal form of documentation is absolutely necessary. An
IEPD or EIEM master document is the primary source and starting point for human readable
documentation (similar to a readme file), and should reference (and describe) any other separate
documentation artifacts. This requirement ensures that baseline documentation is consistently rooted in
a clearly visible artifact within each IEPD and EIEM.

The following subsections will address these artifacts and the concepts, metadata, and content each

supports.

4.1. NIEM MPD Catalog

[Definition: MPD catalog document]

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html

28/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

An XML document that is Schema valid to mpd-catalog-3.0.xsd in Appendix A, MPD
Catalog XML Schema Document, below. The MPD catalog document contains
metadata that describes:

¢ Unique identification

¢ Basic characteristics and properties

¢ Key artifacts and directory structure

¢ Relationships to other MPDs and their artifacts
¢ [IEP conformance targets]

All MPDs require an mpd-catalog.xml artifact. So, the [MPD catalog document] is tailored to
accommodate all MPD classes. However, each MPD class has different catalog requirements. The
catalog metadata are formally defined and declared in an XML schema Appendix A, MPD Catalog
XML Schema Document, below.

This metadata is designed to be the minimal needed to facilitate human understanding, tool support,
and machine processing. The metadata can support a number of MPD uses and functions including
(but not limited to):

* Identification of key artifacts

¢ Generation of a hyperlinked content display using XSLT

* Browsing and understanding of artifacts and their content

¢ Automatic registration into a registry/repository

* Search, discovery, retrieval of MPDs (through metadata and relationships)
* Reuse of MPDs and their artifacts

* Reuse of BIECs and associated EIEMs

¢ Tracing and analysis of MPD lineage

¢ General conformance and validation of the MPD itself

¢ Definition, identification, and validation of IEP conformance targets

[Rule 4-1]
A [valid] and [complete [EPD] MUST contain an mpd-catalog XML document artifact that:

* validates with the NIEM MPD catalog schema contained in Appendix A, MPD Catalog
XML Schema Document, below.

¢ validates with the NIEM MPD catalog Schematron rules [TBD].

* resides in the [MPD root directory].

® bears the file name mpd-catalog.xml.

Note that the Appendix A, MPD Catalog XML Schema Document, below, is a fairly relaxed XML
schema definition with very few mandatory properties. The reason for this is to support tools that must
identify and distiguish a [valid] from a [complete IEPD] during incremental stages of development. This
is explained in more detail in Section 5, MPD Resolution, Existence, and Validation Rules, below.

Because the baseline XML Schema definition for an MPD catalog is more relaxed than is required for
file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 29/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

a [complete IEPD], special Schematron rules must also be applied to an MPD catalog to ensure its
validity or completeness Section 5, MPD Resolution, Existence, and Validation Rules, below.

4.1.1. MPD Catalog as a Table of Contents

One function of the MPD catalog is to serve as a table of contents that identifies, locates, and classifies
key artifacts and artifact sets. For that purposes Appendix A, MPD Catalog XML Schema
Document, below, provides a number of classifier elements for most common artifacts in MPDs. For
other less common or generic artifacts two general classifiers exist: Documentation and
ApplicationInfo. These elements loosely correspond to the meaning of the XML Schema
xs:annotation child elements, xs:documentation and xs: appInfo. General VlsuaL audio, and
textual explanatory documentation should be classified as bocumentat ion, while tool-specific
artifacts (such as imports, exports, executables, etc.) should be classified as ApplicationInfo.

The classifier elements are designed to identify, categorize, and describe any artifact (including its path
name, dependencies, and lineage). Employing XSLT, mpd-catalog.xml can be transformed into an
index.html artifact that displays a hyperlinked MPD table of contents and metadata summary in a
browser.

In general, only an IEPD or EIEM would contain Documentation and ApplicationInfo artifacts.
So, for an IEPD and EIEM, a best practice is to use the master-document artifact (required in the
MPD directory root) to reference bocumentation and ApplicationInfo artifacts whether they
have been classified in the mpd catalog or not.

Release, core update, and domain update catalogs are required to record all artifacts. However, IEPD
and EIEM MPD catalogs are not. The IEPD or EIEM author decides which artifacts (both files and
sets) are important enough to explicitly include in the MPD catalog. The author may choose to include
all, some, or no artifacts in the catalog.

Also note that use of the MPD catalog as a table of contents, frees an IEPD or EIEM author from
having to use a standard directory structure. Instead, the author can design his/her own or use
guidance provided n Appendix D, Guidance for IEPD Directories (non-normative), below.

4.1.2. Extending an MPD Catalog

An MPD Catalog may be extended to accommodate new or additional metadata, artifact classifiers,
or validity constraints that are not already defined in Appendix A, MPD Catalog XML Schema
Document, below.

To extend the mpd-catalog, an MPD author must provide both an XML catalog extension document
(XML) and one or more MPD extension schema documents (XSD). The xml-catalog extension
identifies that one or more MPD catalog extensions are present, and resolves their namespaces to local
URIs. The MPD catalog extension is a schema that defines and declares the new data components for
metadata, classifiers, and/or constraints. Both general [NIEM Conformance] and specific [NIEM
NDR] NIEM conformance rules apply to these components. The xml-catalog extension document
must reside in the [MPD root directory]. The MPD extension schema documents may bear any file
name and reside anywhere in the MPD. This is because the xml-catalog is expected to resolve all local
URIs. MPD processing tools are expected to look for and recognize the xml-catalog (that identifies
MPD catalog extensions exist) by its file name.

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 30/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

The following rule specifies the requirements for an mpd-catalog extension XML catalog document:

[Rule 4-2]
An MPD extension XML catalog document:

e MUST reside in the same relative directory as the mpd-catalog.xml artifact (normally in
the [MPD root directory])

* MUST bear the file name (and type) mpd-extension-xml-catalog.xml.

e MUST resolve all MPD catalog schema extension document namespaces to the correct
corresponding local URIs in the MPD.

So, when a processer identifies a file named mpd-extension-xml-catalog.xml inthe [MPD root
directory], it can assume that it contains references to one or more MPD catalog extension schema
documents. These schema documents have the following requirements:

[Rule 4-3]
An MPD catalog extension schema document:

e MUST conform to the [INIEM NDR], specifically the extension schema conformance
target rules.

* MUST bear the file type of . xsd

* MAY have any file name.

* MAY reside anywhere within the MPD (the XML catalog MUST resolve its URI).

The new data components defined/declared within an MPD catalog extension schema document must
adhere to the following rule:

[Rule 4-4]
An MPD-catalog-extension-schema-document-data-component:

* MUST conform to the [NIEM Conformance] Specification.

e MUST conform to the [INIEM NDR] (extension schema document conformance target).

* MUST employ XSD type derivation (xs:extension Of xs:restriction) and/or
element substitution.

Whether extending an MPD catalog with new metadata elements, artifact classifier elements, or validity
constraint elements, Appendix A, MPD Catalog XML Schema Document, below, provides an
abstract element as a substitution group head in each case. The user simply derives a new type
(through extension or restriction), or reuses an existing type, then declares a new element (of that

type), and identifies it with the appropriate substitution group. Whenever possible, the user should
reuse types, elements, and attributes that are already defined/declared within the Appendix A, MPD

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html

31/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6
Catalog XML Schema Document, below.

4.2. Metadata Concepts

The mpd-catalog also contains both required and optional metadata for the MPD and its artifacts. The
following subsections specify the syntax, formats, and semantics for that metadata.

4.2.1. Version Numbering Scheme

Published MPDs will be periodically revised and updated; therefore, versioning is required to clearly
indicate changes have occurred. A version number is actually part of the unique identification for an
MPD (to be discussed in Section 4.2.2, URI Scheme for MPDs, below).

In order to maintain some consistency while allowing reasonable flexibility to authors, this specification
establishes a simple version numbering scheme that is consistent with most common practices. This is
the same version numbering scheme that is used for NIEM releases.

[Rule 4-5]

Every MPD MUST be assigned a version number that adheres to the regular expression:

version ::= digit+ ('.' digit+)* (status digit+)?
Where:

digit ::= [0-9]

status ::= 'alpha' | 'beta' | 'rc' | 'rev'

The meaning of status value options are as follows:

* alpha indicates early development; changing significantly.

* beta indicates late development; but changing or mcomplete.

¢ rc indicates release candidate; complete but not approved as operational.
* rev indicates very minor revision that does not impact schema validation.

The regular expression notation used above is from [W3-XML] #sec-notation.

Note that the absence ofa status string in the version number indicates that the version has been
baselined and published.

The regular expression in [Rule 4-5], above, allows the following example version numbers:

.2

.3.1.0
.2alphal3
99.88.15rev6

°
e iy

There are two implications in [Rule 4-5], above. The first is that in some cases this version scheme
mplies and confirms a chronology of releases. For example, a given product labeled version 2.3 must
have been released before the same product labeled 2.3.1. Therefore, version 2.3.1 is more current
than version 2.3.

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 32/83

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-notation

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6
However, this is a multi-series version scheme, and chronological relationships exist only within a given
series. So, for example, nothing can be said about a chronological relationship between versions 2.2.4
and 2.3. This is because version 2.2.4 is in a different series (i.e., 2.2) and could actually have been
released after 2.3. Figure 4-1, Example versioning system, below, illustrates a system of versions
that uses the numbering scheme of [Rule 4-5], above.

Figure 4-1: Example versioning system

2.2 - 2.3 - 2.4
221 — 231 —24.1
2.2.2
Y 3.0 3.1 - 3.2
2.2.3
! 3.0.1 - 3.1.1 — 3.2.1
2.2.4
3.0.2 3.2.2

Figure 4-1, Example versioning system, above, illustrates eight different version series. Within this
illustration these are the only sequences that have chronological relationships that can be identified
through version numbers.

e Series 2 is {2.2, 2.3, 2.4}

e Series 3 is {3.0, 3.1, 3.2}

e Series 2.2 18 {2.2(.0),2.2.1,2.2.2,2.2.3,2.2.4}
* Series 2.3 is {2.3(.0), 2.3.1}

e Series 2.4 1s {2.4(.0), 2.4.1}

e Series 3.0 is {3.0(.0), 3.0.1, 3.0.2}

e Series 3.1 is {3.1(.0), 3.1.1}

e Series 3.2 s {3.2(.0), 3.2.1,3.2.2}

The second implication of [Rule 4-5], above, is that pre-releases are easily identified by the strings
alpha, beta, and rc. These strings are simple visible indicators of MPD status or stage of
development.

This specification places no further restrictions or meaning (implied or otherwise) on a version number.
Authors have the option to use integers between dots to indicate degree of compatibility or other
relationships between versions as needed. For example, for a given MPD, the author may declare that
if an instance validates to version 4.2.3, then it will also validate to version 4.2. Such a claim is
acceptable. However, this specification does not imply any such relationships. Any meaning assigned

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 33/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6
to version sequence by an authoritative source should be unambiguously documented within the MPD.

[Rule 4-6]

MPD version numbers within a version series do NOT mmply compatibility between versions.
Compatibility between or among MPD versions MUST be explicitly stated in documentation.

Note that an author who updates an existing MPD to a new version may choose the version number
based on its previous version number or not, as long as it follows the version number syntax.

Version number syntax applies to MPDs only; there is no mandate to apply this syntax to artifact
versioning. To do so is optional.

4.2.2. URI Scheme for MPDs

To facilitate MPD sharing and reuse the assignment ofa URI (Uniform Resource Identifier) to each
MPD is essential.

[Rule 4-7]

Every MPD MUST be assigned a valid http URL.

This specification follows [RFC3986 URI] which defines the syntax and format for a URI. However,
this specification also restricts an MPD URI to a URL and does not allow a URN (Uniform Resource
Name) to be assigned to an MPD.

Here is a typical example of an http URI: http://www.abc.org/niem-iepd/order/2.1.2rev3/

Note that [Rule 4-7], above, explicitly states that a URI assigned to an MPD must be valid. This
means that the person or organization assigning the URI either is the registrant of the domain name, or
has authority from the registrant to assign this URL as an MPD URI. In the example above,

www . abc . org i the domain name (between the second and third "/"). There is no requirement for a
URL assigned to an MPD to resolve to any particular Internet resource or to resolve at all. However,
it is always good practice for such a URL to resolve to the resource it represents, the directory it
resides i, or to documentation for that resource. See
http://www.w3.0rg/Provider/Style/URI.html

The MPD version number (i.e., the value of the mpdversion1Dd in Appendix A, MPD Catalog XML
Schema Document, below) is essential to its unique identification. Incorporation of the version number
within the MPD URI provides a simple visual (as well as machine readable) means of identifying one of
the most fundamental relationships between MPDs, i.e., that one is a different version of another.
Another advantage to this technique is that different versions of an MPD will generally group together
in a standard sorted ordering.

[Rule 4-8]

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 34/83

http://www.w3.org/Provider/Style/URI.html

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

The URI for an MPD MUST end i its version number concatenated with a forward slash
character ("/").

And finally, note that Appendix A, MPD Catalog XML Schema Document, below, defines a
mandatory attribute for the mpdURT, mpdName, mpdClassCode, and mpdversionID. Since the ending
substring of an MPD URI must be its version ID (followed by forward slash), then the mpd-catalog
duplicates the MPD version ID in two locations. By design, Section 7.1, MPD File Name Syntax,
below, mtentionally duplicates these attribute values in the MPD file name. There are two reasons for
this design. First, software tools are expected to build and process mpd-catalogs. Instead of forcing
tool developers to parse the URI just to retrieve name, version, and class, the mpd-catalog separates
these data items as XML attributes. Second, duplication of that key metadata in both the URI and the
file name facilitates fast visual recognition of an MPD, rather than requiring that a user open the

archive, open its mpd-catalog.xml, and scan XML content to locate the data.

4.2.3. URI Scheme for MPD Artifacts

Given the URI for an MPD, a URI also exists for each artifact in that MPD. Again, this specification
follows [RFC3986 URI] and employs a fragment identifier to designate an artifact URI. Each file
artifact or set (directory) artifact is uniquely identified by its path name relative to the [MPD root
directory]. The URI for an MPD artifact is the concatenatation of (1) the MPD URI, (2) the "#"
character, and (3) the path name of'the artifact.

[Rule 4-9]
The URI reference to an individual MPD artifact from another resource is the concatenation of

¢ The URI of the MPD that contains the artifact.

* The crosshatch or pound character ("#").

e A fragment identifier that is the locally unique path name (string) of the artifact relative to
the [MPD root directory].

Thus, each MPD artifact (file or set) has a globally unique URI that can be referenced from other
external resources as needed. Example artifact URIs include:

® http://example.gov/niem-iepd/pmix/3.0/#subset/niem-core.xsd

® http://example.gov/niem-iepd/pmix/3.0beta2/#extension/ext-1.1.xsd

® http://example.gov/niem-iepd/pmix/3.0/#documentation/user-manual.docx
® http://example.gov/niem-iepd/pmix/3.0/#application-info/ (a set artifact)

® http://example.gov/niem-iepd/pmix/3.0/#iep-sample/query/ (a set artifact)

® http://www.abc.org/niem-iepd/order/2.1.2rev3/#extension/requestd.xsd

Here is one simple scenario for use of an artifact URI within the mpd-catalog. Consider two different
IEPDs with the following URISs:

1. nttp://example.gov/niem-iepd/pmix/3.0/
2. http://www.abc.org/niem-iepd/order/2.1.2rev3/

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 35/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

The author of IEPD (1) has decided to reuse (as-is) the extension/requestl.xsd artifact in [EPD
(2). He/she can optionally create an mpd-catalog ExtensionSchemaDocument entry for this artifact
(assuming it is an extension schema document), and add the attribute:

@externalURI="http://www.abc.org/niem-

iepd/order/2.1.2rev3/#extension/requestd.xsd"

Additional @externalURT attributes can be optionally added to this entry if the author knows of other
uses of this same artifact in other MPDs and wishes to acknowledge them.

Note that a URI does not have the same meaning as namespace. Do not rely on namespaces for
artifact URIs. Recall that the namespaces used in a schema document subset derived from a NIEM
release are identical to the namespaces of the release itself. Furthermore, an IEPD or an EIEM may
contain multiple subsets. The non-uniqueness of NIEM namespaces implies that they cannot be used
as URIs for MPD artifacts.

[Rule 4-10]

NIEM namespaces MUST NOT be used as URIs for MPD artifacts.

Later in Section 4.5, XML Catalogs, below, we will describe the use of [XML Catalogs] to
correlate and resolve namespaces to their corresponding local URIs.

4.2.4. MPD Artifact Lineage

An important MPD business requirement is transparency of lineage. MPDs mnternally facilitate
identification of the relationships that may exist among their artifacts, families, versions, adaptations,
specializations, generalizations, etc. The URI scheme for MPDs and artifacts as well as the mpd-
catalog make this possible.

The mpd-catalog provides a Relationship element with three attributes (resourceURT,
relationshipCode, and descriptionText) to identify the pedigree of an MPD. There are many
ways that one MPD may relate to another. This makes it extremely difficult to specify a fixed set of
values that can objectively define an exact relationship between a pair of MPDs. Therefore, the
optional descriptionText attribute is provided to further explain the nature of any of the eight
relationshipCode values available {version_of, specializes, generalizes, deprecates,
supersedes, adapts, conforms_to, updates}. In some cases, the value OfrelationshipCode
may be generic enough to require a more detailed explanation in descriptionText (for example, if
its value is adapts).

The mpd-catalog also enables an author to record a fine-grained pedigree between MPDs when
reusing artifacts from other MPDs. By default each artifact identified in an mpd-catalog has a globally
unique URI (using a fragment reference) that can refer to it. An MPD author signifies reuse of a given
artifact by entering the URI for that artifact in the optional externalURT attribute within the
appropriate FileType Of FileSetType elements.

Some MPDs are designed for more extensive reuse than others. For example, families of [IEPDs are
expected to reuse a given EIEM. In such cases, the mpd-catalogs for these IEPDs and the

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 36/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6
corresponding EIEM may overlap in or duplicate a large number of metadata and references. This is
expected. The mpd-catalog can contain many references to and semantics for artifacts and MPDs.
Correct and consistent use of these references and semantics will create networks of related MPDs so
that tools can locate, parse, and process them as needed and when available in shared repositories.

4.3. Change Log

4.3.1. Change Log for Releases and Core/Domain Updates

Although the version identifier is useful for a fast visual indication of the state of an MPD, it only
provides a general indication that the MPD has changed. There is no indication of the volume,
complexity, or impact of changes applied since a previous version. A change log provides a more
specific accounting of changes from one version to another.

[Definition: change log]

A formal (for releases, core updates, domain updates) or nformal (for [IEPDs and EIEMs)
artifact that accounts for changes applied to an MPD since its previous version (or
versions).

Once published, NIEM releases always exist. This ensures that [EPDs and EIEMs built from a given
release will always be usable, and may be updated to a new NIEM release only when convenient or
absolutely necessary to take advantage of new or modified data components. Though not encouraged,
nothing prohibits a developer from building an IEPD based on a NIEM release that is older than the
most current version. There may be potential disadvantages related to interoperability levels achievable
with others developing to the latest release. Nonetheless, an older version might meet the business
needs of a particular organization quite well.

In spite of'this built-in stability, the NIEM architecture is designed to evolve as requirements change.
New versions of reference schema document sets such as NIEM releases, core updates, and domain
updates can have significant impacts on future IEPDs and EIEMs. Developers must understand in
detail how changes will affect their IEPD and EIEM products and the tools used to build them. To
work effectively, tools for domain content development, impact analysis, migration between releases,
etc. must be able to digest formal change logs. A formal change log is also essential to efficiently
process and integrate new and changed content into NIEM for new releases, and to simultaneously
maintain multiple versions of NIEM for users. All of the foregoing reasons dictate that NIEM require a
normative change log for reference schema document sets.

[Rule 4-11]

Every MPD that is a reference schema document set (i.e., NIEM releases, core updates, and
domain updates) MUST contain an XML change log document that:

¢ Validates with the NIEM change log schemas mpd-changelog.xsd and niem-
model . xsd. (Note these are base filenames; actual filenames also contain a version
number; for example, mpd-changelog-1.0.xsd.)

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 37/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6
* Records changes to previous reference schema documents that this MPD represents.
e Bears the file name changelog.xml.
¢ Resides in the [MPD root directory].

The current version of mpd-changelog.xsd is available here:
http://reference.niem.gov/niem/resource/mpd/changelog/

The current version of niem-model.xsd which describes the NIEM conceptual model is available
here:

http://reference.niem.gov/niem/resource/model/

Since the schemas are the authority for a release or update and because almost all tool support
depends on the schemas, the change log is only designed to audit transactional changes to the
reference schema documents. There is no provision for logging changes to support documentation or
other non-schema artifacts. Non-schema changes are generally handled non-normatively in the form of
release notes.

4.3.2. Change Log for IEPDs and EIEMs

IEPD and EIEM change log requirements are less strict and are not required to conform to the naming
and XML schema specifications in [Rule 4-11], above. However, a change log is still required.

[Rule 4-12]
Every MPD that is an IEPD or EIEM MUST contain a change log artifact that:

* Records changes to previous I[EPD or EIEM schemas that this MPD represents.
* Has a file name that begins with the substring "changelog".
¢ Resides in the [MPD root directory].

This rule does not specify the format for an IEPD or EIEM change log. This is left to the discretion of
the author. While use of mpd-changelog.xsd is encouraged for IEPD and EIEM schemas, it is not
required. Relaxing the change log format encourages and facilitates easier and more rapid
development. I[EPDs and EIEMs are developed by a variety of NIEM domains, organizations, and
users; and they are intended to specify implementable exchanges. As a result, [IEPDs and EIEMs may
contain both documentation artifacts and machine readable application artifacts in a large variety of
formats. A consistent standard change log would be very difficult to specify.

The mitial version of an IEPD or EIEM would not normally require a change log. However, for
consistency of validation and to help facilitate automatic processing of IEPDs and EIEMs by tools:

[Rule 4-13]

The mitial version of an [EPD or EIEM MUST contain a change log artifact with at least one

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 38/83

http://reference.niem.gov/niem/resource/mpd/changelog/
http://reference.niem.gov/niem/resource/model/

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6
entry for its creation date.

Finally, if the mpd-changelog.xsd specification is used for IEPD/EIEM schema changes, then it is
potentially possible that such an MPD will need a second change log if the author wants to
accommodate documentation or other changes not related to schemas (since mpd-changelog.xsd
cannot be extended to accommodate such changes). If this is the case, then the following rule applies:

[Rule 4-14]

If an IEPD or EIEM contains more than one change log artifact, then each change log artifact
MUST:

¢ Have a file name that begins with the substring changelog.
¢ Reside in the [MPD root directory].

4.4. Master Document

This section is only applicable to IEPDs and EIEMs.

[Definition: master document]|

An informal documentation artifact contained in an IEPD or EIEM that serves as the initial
general source of human readable descriptive or instructional information. A master

document may index or reference other more specific documentation or other explanatory
materials within the MPD.

The master document is similar to a readme file. It is only required for [EPDs and EIEMs since these
MPDs are allowed the greatest design flexibility, can be developed and implemented different ways,
and are not centrally managed. On the other hand, releases and domain updates have fairly restrictive
rules to obey, standard documentation for how to use them, and are centrally managed.

[Rule 4-15]

An IEPD or an EIEM MUST contain a master document located in the [MPD root directory]
whose filename begins with the substring master-document.

The master document may replicate some of the metadata in the mpd-catalog. However, the mpd-
catalog is intentionally designed to be efficient, easily to parse, and minimal. It is intended for search,
discovery, registration, and Web page generation, and not to support various types of detailed
technical prose often required for human understanding.

The primary purposes of the master document include:
file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 39/83

11514

National Information Exchange Model Model Package Description Specification, 3.0alpha6

* To help facilitate understanding and reuse of IEPDs and EIEMs.

* To ensure that fundamental and detailed business-level information about an IEPD or EIEM are
documented for human understanding.

¢ To ensure the IEPD or EIEM author has considered and conveys such fundamental information.

¢ To provide an initial source within an IEPD or EIEM for human consumable documentation
(similar to a readme file) and/or references to other business or technical documentation needed
for understanding.

The master document is not intended to be the only source of written documentation for an MPD
(though it can be). It is expected to be the initial resource that references and coordinates all others
whether physically present in the MPD or linked by reference. Many organizations have their own
customized formats and operating procedures for documenting their work and products. This
specification does not attempt to standardize master document format or layout. Only the file name and
relative path within the MPD archive are strictly specified. The following section will generally describe
minimal content that should be in the master document. This guidance is non-normative, so adherence
is a subjective judgment by the author.

4.4.1. Master Document Content

This section is neither a cookbook nor a normative specification for a master document. It simply
suggests typical topics that a master document should or might address, and provides some non-
normative guidance.

The master document should help another user or developer to understand the content and use of an
IEPD or EIEM, as well as determine potential for reuse or adaptation. It should describe what
immplementers need to understand and what the author considers is important to understanding an IEPD
or EIEM. There is no limit or constraint on its content.

At a minimum, the master document should contain several fundamental elements of information about
the MPD:

* Purpose of this MPD.

¢ Scope of'its deployment, usage, and information content.

* Business value and rationale for developing it.

* Type of information it is mtended to exchange (in business terms).

¢ Identification of senders and receivers (or the types of senders and receivers).

¢ Typical interactions between senders, receivers, and systems.

¢ References to other documentation within the MPD, and links to external documents that may
be needed to understand and implement it.

Many document formats (e.g., Microsoft Word) can display hot links to local files within the MPD
archive as well as URLSs to files on the Internet. Employing such a format is highly recommended but
not mandatory.

[Rule 4-16]

A NIEM IEPD or EIEM master document SHOULD (at a minimum) describe the MPD
purpose, scope, business value, exchange information, typical senders/receivers, interactions, and
references to other documentation.

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html

40/83

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6

MPD documentation types and formats will vary with the methodologies and tools used to develop
them. Most of this documentation will likely be typical of that generated for data-oriented software
projects. Some documentation may only require sections in the master document. Other
documentation may be more suitable as separate artifacts that are referenced and explained by a
section in the master document (such as diagrams, large tables, data dictionaries, test results/reports,
etc.). The following are some common examples of sections in or separate artifacts associated with the
master document:

* Executive summary (especially for lengthy master documents>

¢ Use cases

* Business processes

* Business requirements

¢ Business rules

¢ Metadata security considerations

* Domain model design specifications and documentation and/or diagrams

¢ Data dictionary

¢ Testing and conformance

¢ Development tools and methodologies used

¢ Implementation guidance (particularly important for a complex IEPD with multiple subsets or
IEP root elements)

¢ Security considerations

* Privacy considerations (e.g., Personal Identifiable Information)

¢ Types of implementations

¢ [fan IEPD employs multiple subsets:

o When, where, and how these are used
o How these are coordinated in the implementation
o Caveats regarding duplicate data components (which can occur with multiple subsets)

¢ Ifan IEPD employs multiple IEP conformance targets:

o Purpose of each and when it should be used
o How these are coordinated during the runtime preparation and transmission of [EPs

4.5. XML Catalogs

This section is applicable to all MPDs. However, it is of particular importance to IEPDs and IEP
validation (to be covered in more detail in Section 4.6, Information Exchange Packages, below.

[XML Catalogs] are XML documents that describe a mapping between external entity references
and locally-cached equivalents. They are used to resolve XML schema document target namespaces
to local URIs. This is especially useful when assembling an XML schema from an XML schema
document set. Some validators (e.g., xerces) and other tools utilize XML catalogs for this purpose.

[Definition: XML catalog document]

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 41/83

http://xerces.apache.org/xerces2-j/faq-xcatalogs.html

1/15/14 National Information Exchange Model Model Package Description Specification, 3.0alpha6
An XML document defined by the semantics of [XML Catalogs].

The [NIEM SSGT] (for NIEM 3.0) automatically adds an xm1-catalog.xml artifact to each
schema document subset it generates. The NIEM 3.0 release also includes such an artifact. These
[XML catalog documents] are provided for user convenience in the case these schema document sets
must be assembled into a schema.

IEPD authors must employ [XML catalog documents] within [EPDs to facilitate validation of IEPs.

Assembling a schema or building an [XML catalog document] from the XML schema documents of
non-conformant external standards that contain xs : include statements can be problematic. Be
aware that if an xml-catalog (resulting from processing a set of external XML schema documents)
contains any two uri element entries with identical namespaces, then that xml-catalog cannot be used
for XML validation. It will have to be modified to ensure that each namespace resolves to one and
only one unique [XML catalog document] uri attribute value.

In order to support schema assembly for the purpose of XML validation, the following rule requires
that the namespaces of all XML schema documents used within an IEPD resolve to a locally-unique
artifact:

[Rule 4-17]

An IEPD MUST resolve each namespace it uses to a locally unique URI through one or more
[XML catalog documents].

This rule implies that NextCatalog elements may be used within [XML catalog documents] to
connect them and control their parsing sequence. An IEPD must contain at least one [XML catalog
document] because it is the onty MPD that can specify an IEP [Definition: Information Exchange
Package (IEP)] and provide validation instructions that would require schema assembly from XML
schema documents. Section 4.6, Information Exchange Packages, below, provides more specifics
about using [XML catalog documents] within [EPDs.

4.6. Information Exchange Packages

This section only applies to [EPDs. An IEPD is the only MPD that defines IEPs [Definition:
Information Exchange Package (IEP)]. An IEPD does this by declaring (either implicitly or
explicitly) one or more /EP conformance targets.

[Definition: IEP conformance target]

A class or category of IEPs which has a set of one or more validity constraints and a unique
identifier. Every IEP is an instance of one or more IEP conformance targets.

This definition requires that a [EP conformance target be associated with a unique identifier, a

file:///C:/cygwinfhome/mk122/niem-g oviniem.g ovireference/niem/specification/model -packag e-description/3.0alpha6/mpd-spec.html 42/83

11514

National Information Exchange Model Model Package Description Specification, 3.0alpha6

Conformance Target URI that distinguishes it from all other IEP conformance targets. Similar to a
URI for an MPD artifact, construct a conformance target URI by concatenating the IEPD's http
URI, the pound character (#), and a locally unique (within the IEPD) ncName [W3C XML Schema
Structures].

[Definition: IEP conformance target URI]

A globally unique identifier for an IEP conformance target declared in an IEPD, formed by
concatenating;

1. the IEPD URI
2. the pound character (#) and
3. alocally unique nCName per [W3C XML Schema Structures]

The foregoing definition requires that an IEP conformance target class have a URI. As a result, the
following rule is also required:

[Rule 4-18]

An IEPConformanceTarget MUST be assigned a locally unique NCName value for its
structures:id attribute.

An IEPD defines IEP conformance targets by explicitly and formally declaring them within its mpd-
catalog. The rule above ensures t